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The existence of the energy-concentration effect in the regions between the inclusions of a high-contrast
heavy-charged composite material has been verified in the process of numerical solution of the problem on
heat conduction in this material. The formation of a high-energy region (energy "neck") under different con-
ditions depending on the contrast range of the composite-material components and the distance between the
inclusions has been investigated.

Introduction. The effect of energy concentration in the regions between the inclusions of a high-contrast
heavy-charged composite material was predicted theoretically in [1, 2] and was used implicitly in many so-called "net"
models defining high-contrast inhomogeneous media (see, e.g., [3]). As follows from the indicated works, this effect
can be marked only in materials in which the distances between the inclusions are fairly small and, therefore, is diffi-
cult to investigate experimentally (the author failed to find a description of such experiments in the literature). The en-
ergy-concentration effect forms the basis for the so-called "net" models defining high-contrast heavy-charged composite
materials (examples of the use of "net" models are presented, e.g., in [4]). Therefore, the verification of the existence
of this effect is of practical and scientific interest. It should be noted that, in [1, 2], the existence of the energy-con-
centration effect was substantiated for the case of ideally conducting inclusions and for interinclusion distances close
to zero. However, even through the conductivity of actual inclusions is high, it has a definite value, and the small dis-
tances between the inclusions are also of definite value. It is the author’s opinion that the consideration of the influ-
ence of the finiteness of these quantities on the energy-concentration effect in the regions between the inclusions is
also of theoretical and practical importance. This problem is difficult to solve analytically; therefore, we solved it with
the use of a numerical method, namely, the finite-element method.

Periodic Problem. Numerical Verification of the Existence of the Energy-Concentration Effect. Let us con-

sider a periodic system of nonintersecting disks that do not touch one another (Fig. 1). The regions 


Di, i = 1, ..., N



 will

serve as inclusions, and the region Q = R2 \ 2
i=1

N

 Di  will be a matrix.

The equation of heat conduction [5] at a temperature Θ(x) has the form

div (a (x) ∇Θ) = 0   in   R
2
 . (1)

The heat conductivity coefficient is equal to

a (x) = 




am  in the matrix ,
ad  in the disks .

(2)

The problem is characterized by two parameters — the contrast range (contrast) of the components of a com-
posite material and the characteristic relative distance between the inclusions
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c = 
ad

am
 ,   δ = 

d

D
 . (3)

For a high-contrast heavy-charged composite material

c >> 1 ,   δ << 1 . (4)

A heavy-charged composite material contains a maximum possible number of inclusions. The high charging of
this material is equivalent to a dense packing of inclusions.

Fig. 1. Periodic system of disks (a) and a periodicity cell P (b).

Fig. 2. Distribution of the energy density in the periodicity cell P (δ = 0.1, c
= 0.05).
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Below we consider a composite material with a periodic structure. If an infinite composite material (Fig. 1)
has a thermal field with an average temperature gradient G directed along the 0y axis, the heat-conduction problem (1)
for it is solved as

Θ (x) = Gy + ΘP (x) , (5)

where ΘP(x) is a periodic function with a periodicity cell P (Fig. 1).
Representation (5) allows one to pass from the solution of problem (1) to the solution of the next problem

for the periodicity cell:

div (a (x) ∇Θ) = 0   in   P ,   Θ (x, 0) = − 1 ,   Θ (x, 1) = 1 ,

∂Θ
∂n

 (0, y) = 
∂Θ
∂n

 (1, y) = 0 . (6)

Problem (6) was solved numerically for values of the contrast c falling within the range 2–10,000 and the charac-
teristic relative interinclusion distances δ ranging from 0.05 to 0.005. It was assumed in the numerical calculations that
the conductivity of the matrix is equal to unity and the radius of the disk is equal to unity (the disk diameter D = 2).
A typical distribution of the doubled energy density E = a(x)∇Θ

2 is shown in Fig. 2. It is seen that the energy
neck begins to form geometrically when the contrast is equal to 5 (see Fig. 2). However, at small values of the con-
trast c, the energy density of the neck depends substantially on the value of c, and the energy density of the neck is
stabilized at large values of the contrast (see the two lower diagrams in Fig. 2 and the corresponding scales of values
under them). It was established that the energy density of the neck is stabilized at c = 1000. The author believes that
this energy-density stabilization corresponds to the effect of energy concentration in the regions between the inclusions
of a high-contrast heavy-charged composite material, described in [1, 2].

Nonperiodic Problem. Numerical Investigation of the Approximation of a Continuous Problem with the
Use of a Net Model. The solution of the periodic problem on heat conduction in a high-contrast heavy-charged com-
posite material allows one to determine the contrast range and the distance between the inclusions, at which there
arises the energy-concentration effect in the regions between the inclusions of this material. We will solve the general
(nonperiodic) heat-conduction problem for this material.

As was noted above, the energy-concentration effect forms the basis for the so-called "net" models defining
high-contrast heavy-charged composite materials. Let us consider the problem on the accuracy of approximation of the
continuous heat-conduction problem

div (a (x) ∇Θ) = 0   in the region   [− 1, 1]
2
 ,  Θ (x, 0) = − 1 ,  Θ (x, 1) = 1 ,

∂Θ
∂n

 (0, y) = 
∂Θ
∂n

 (1, y) = 0 (7)

by a net model. Problem (7) defines the temperature distribution in a square, the lateral faces of which are heat-insu-
lated and the temperatures of the upper and lower faces are equal to 1 and −1. The net model includes the equations
[1, 2, 4]

  ∑ 

j8Ni

 C1j
 (2)

 (ti − tj) = 0 (8)

at the nodes corresponding to the inclusions located inside the region Q; in this case,

ti = − 1 ,   ti = 1 (9)

at the nodes corresponding to the lower and upper boundaries of the region [−1, 1]2.

814



The capacitance of the disk–disk pair is equal to π√R
δ

 and the capacitance of the disk–semiplane pair is

equal to π√2R
δ

, where δ is the distance between the disks or between the disk and the semiplane [6].

The continuous model of the composite material with a heat conduction defined by problem (7) is presented
in Fig. 3a, and its net model (8), (9) is presented in Fig. 3b. As the criterion of approximation of problem (7) by
model problem (8), (9), we used the difference between the temperatures of the disks and the temperatures at the
nodes of the net model. In this case, the temperatures of the disks were determined from the numerical solution of
problem (7) by the finite-element method, and the temperatures at the nodes of the net were determined from the so-
lution of the system of linear algebraic equations. The configuration of the disks, for which the problem was solved,
is presented in Fig. 3. The contrast range was assumed to be equal to 103–106 and the distances between the disks
were taken from the interval 0.05–0.0005. Figure 3a shows the temperatures at certain points of the disks, determined
for a contrast c = 1000 and a relative distance between the disks δ C 0.005. The number near a small square is the
temperature at its center. It is seen that the temperature inside each disk remains practically constant. This means that
the approximation was made correctly. It should be noted that the constancy of the temperature inside the disks is con-
sistent with the corresponding hypothesis of the net model [1–3].

According to [1, 2], the main hypothesis of the net model is the existence of the energy-concentration effect
in the regions between the inclusions of a high-contrast heavy-charged composite material. For the purpose of verifi-
cation of this fact, the data on the energy-density distribution were displayed on a computer. In the figure obtained,
the region outside the disks with energy density close to zero and the small regions of the necks between the disks
with nonzero (fairly large) energy densities are marked in different colors for clearness.

Figure 4a shows the distribution of the energy density in the neck between disks No. 3 and No. 4 in the
black-white variant (the numbering of disks in Fig. 3b).

In Fig. 4b, the finite-element net in the channel between the disks and in the disks is shown. The black color
of the channel corresponds to a large number of finite elements (about 4000). The use of this fine net in the neck is
explained by the fact that energy is concentrated in the regions between the inclusions with the use of coarse nets, and
we obtained solutions whose the graphical representation showed that the thermal field is distributed nonuniformly in
the form of corners, deflections, etc., not characteristic of the solution of the heat-conduction equation.

Fig. 3. System of disks and potentials determined from the solution of the
continuous problem (a) and net model of the system of disks (b) (circles are
net nodes corresponding to disks, and rectangles are nodes at the boundary of
the region).
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Let us denote the distances between the neighboring disks by δ and the distance between the near-boundary
disks and the boundary by δb. The temperatures of the disks, determined from the solution of the continuous prob-
lem (7), will be designated as ti

cont, where i is a number of a disk (as was noted above, the temperature inside a
disk is practically constant and can be defined by one number). The temperatures of the nodes, determined from the
solution of the net problem (8), (9), will be designated as ti

net, where i is a number of a node. Table 1 presents the
values of ti

cont and ti
net, determined from the solution of problems (7) and (8), (9), at different values of the distances

δ, δb and the contrast c (3); the numbers of nodes in the table are identical to those in Fig. 3b. The relative error is
determined as

εr =  max
i=1,...,N

  







ti
cont

 − ti
net

ti
cont








(10)

and the absolute error is equal to

εa =  max
i=1,...,N

  ti
cont

 − ti
net

. (11)

Fig. 4. Distribution of the energy density in the channel between the disks (a)
and finite-element net in the channel between the disks and in the disks (b).

i

δ = 0.005, δb = 0.005 δ = 0.0027, δb = 0.0025 δ = 0.00049, δb = 0.0005

ti
net ti

cont

ti
net ti

cont

ti
net ti

cont, c = 104

c = 103 c = 106 c = 103 c = 106

1 0.81 0.80 0.79 0.80 0.80 0.80 0.80 0.81

2 0.54 0.51 0.51 0.52 0.54 0.52 0.53 0.54

3 0.27 0.25 0.25 0.25 0.27 0.26 0.26 0.27

4 –0.27 –0.25 –0.25 –0.26 –0.27 –0.26 –0.26 –0.27 

5 –0.54 –0.53 –0.52 –0.53 –0.54 –0.53 –0.53 –0.54 

6 –0.81 –0.80 –0.80 –0.81 –0.80 –0.81 –0.81 –0.81 

7 0.81 0.80 0.80 0.81 0.80 0.81 0.80 0.81

8 0.54 0.52 0.52 0.53 0.54 0.53 0.53 0.54

9 –0.54 –0.51 –0.51 –0.52 –0.54 –0.52 –0.53 –0.54 

10 –0.81 –0.79 –0.80 –0.80 –0.80 –0.80 –0.80 –0.81 

TABLE 1. Values of ti
cont and ti

net Determined from the Solution of Problems (7) and (8), (9) at Different Disk–Disk and
Disk–Boundary Distances
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The values of these errors are given in Table 2, from which it is seen that, as the distances between the neighboring
disks and the near-boundary disks and the boundaries decrease, the corresponding errors decrease, i.e., the solutions of
problem (8), (9) approach the solutions of problem (7) in the disks. This allows the conclusion that the solutions of
the grid problem (8), (9) approximate the solutions of problem (7) in the disks.

It should be noted that the solutions of problem (8), (9) approach the solutions of problem (7) in the disks
fairly slowly with decrease in the distances δ and δb. The absolute error in our numerical calculations was 0.05 for
the distance 0.015, 0.03 for the distance 0.005, 0.02 for the distance 0.0027, and 0.01 for the distance 0.00049. In this
case, it was assumed that the temperature at the lower boundary is equal to −1, and the temperature at the upper
boundary is equal to 1 (see Fig. 3). Accordingly, the temperature inside the region between the inclusions was deter-
mined within the same limits. The distances 0.015–0.01 can be realized in the case where the inclusions are closely
packed, and the distances 0.005–0.001 are difficult to realize in practice; they are of interest mainly for mathematical
investigation of the approximation of the solutions of problem (7) by problem (8), (9).

The data presented allow the conclusion that the solutions of problem (8), (9) approximate the solutions of
problem (7) in the disks at a distance of 0.015 or smaller between them and a contrast of 103 or larger. At distances
attainable in practice (0.015–0.01), the absolute approximation error is of the order of 0.03 and the relative approxima-
tion error is of the order of 0.08.

Existence of the Energy-Concentration Effect in a Composite Material with a Nonlinear Matrix. The
problem on the existence of the energy-concentration effect in the regions between the inclusions of a nonlinear high-
contrast heavy-charged composite material was numerically investigated. The problem was solved using the heat-con-
duction equation with a temperature-dependent heat-conductivity coefficient

div (a (x, Θ) ∇Θ) = 0 . (12)

The cases of existence of one inclusion and a system of inclusions, such as the system presented in Fig. 3a, were con-
sidered.

In the numerical calculations, the radius of a disc was taken to be equal to unity. It was assumed that the
material being investigated has the following nonlinearity:

δ δb εr εa

0.005  0.005 0.080 0.03

0.0027 0.0025 0.074 0.02

0.00049 0.0005 0.037 0.01

TABLE 2. Errors in the Solution of Problem (7) and (8), (9) (see Table 1)

Fig. 5. Distribution of the energy density in the nonlinear composite material
(δ = 0.05).
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a (x, Θ) = 











1 + 
19
4

 (Θ + 2)  in the matrix ,

10
4
    inside inclusions

(the matrix in nonlinear and the inclusions are linear). In the problem being considered, it was assumed that
−1 ≤ Θ ≤ 1.

In both cases (the problem for one inclusion and the problem for a system of inclusions), the energy necks
were clearly seen. For the first problem, the energy-density distribution in the nonlinear formulation is presented in
Fig. 5. The characteristic energy values are indicated on the scale in Fig. 5.

It should be noted that the energy neck in the nonlinear problem differs somewhat from the energy necks in
the linear problem (see Fig. 2), which is evidently explained by the nonlinearity of the first-mentioned problem. The
author restricts himself to the determination of the existence of the energy-concentration effect in the regions between
the inclusions of a nonlinear high-contrast heavy-charged composite material. A more comprehensive analysis of non-
linear problems and corresponding net models calls for a separate investigation.

Remark on the Choice of a Net for Numerical Solution of Problems for High-Contrast Heavy-Charged
Composite Materials. In a number of works, the problems on heat conduction in composite materials were solved by
the finite-element method with the use of a uniform net (see, e.g., [7, 8]). The possibility of use of uniform nets for
calculating the heat conductivity of high-contrast heavy-charged composite materials was investigated in [1], where it
was shown that, in the regions located at large distances from the "necks," the energy concentration is small and a
uniform division of these regions does not prove its value (leads to an idle counting). Note that a uniform division is
not warranted in a neck too, which, however, is explained by a different reason. In the above-mentioned investigations
[7, 8], a uniform division resulted in that the region between the inclusions contained several (3–5) finite elements. An
analysis performed by the author of the present work has shown that the temperature field in the region between the
neighboring inclusions cannot be correctly calculated with this number of finite elements. The minimum number of fi-
nite elements, necessary for a correct calculation, should be several tens or, for more exact calculations, several hun-
dreds. Consequently, to numerically solve the problem on heat conduction in a high-contrast heavy-charged composite
material by the finite-element method, it is necessary to use a very nonuniform net accounting for the effect of energy
concentration in the regions between the inclusions of this material, i.e., a finite-element net should be constructed
with account for the microgeometry of the composite material.

Conclusions. The results of the numerical solution of the heat-conduction problem for a high-contrast heavy-
charged composite material lend credence to the assumption that, in this material there exist energy "necks" and the
energy-concentration effect can arise in the regions between the inclusions. The energy "necks" manifest themself
markedly at a contrast c ≥ 10 and a relative distance between the neighboring inclusions δ ≤ 0.1. However, the energy
density in a "neck" is stabilized at a contrast c ≥ 1000 and the continuous problem can be approximated by the net
problem with an accuracy of 10% (which can be considered as an acceptable accuracy for the problems on the study
of materials [9]) beginning with the relative distance between the neighboring inclusions δ ≤ 0.015.

The results of our numerical calculations have shown that the energy-concentration effect arises in the regions
between the inclusions of a nonlinear heavy-charged composite material, even though the structure of the field in a
"neck" is not entirely identical to that in the linear case.

The results of the work were reported in [10].

NOTATION

a(x), heat-conductivity coefficient of a composite material as a function of the spatial variable x; am, heat-con-
ductivity coefficient of a matrix material; ad, heat-conductivity coefficient of the inclusion material; c = ad

 ⁄ am, con-
trast of the composite-material components; Cij

 (2), capacitance of the ith and jth bodies everywhere over the space
between the inclusions; d, characteristic distance between the inclusions; D, characteristic size (diameter) of the inclu-
sions; Di, system of disks; N, number of disks; n, vector of the normal to the boundary of the region between the
inclusions; Q, region occupied by the matrix; R = D ⁄ 2, radius of a disk; ti, temperature at the nodes of a net; ti

cont,
temperature of the disks determined from the solution of the continuous problem (7); ti

net, temperature at the nodes de-
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termined from the solution of the net problem (8), (9); δ = d ⁄ D, relative distance between the inclusions; δb, distance
between the near-boundary disk and the boundary; εr, relative error of solution; εa, absolute error of solution; Θ(x),
temperature as a function of the spatial variable x. Subscripts: a, absolute; b, boundary; cont, continuous; d, disk; m,
matrix; net, net; r, relative.
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